WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis SUMMARY Discharging Facility: Morgan Lagoons UPDES No: UT-0020813 Current Flow: 0.45 MGD **Design Flow** Design Flow 0.45 MGD Receiving Water: Weber River Stream Classification: 1C, 2B, 3A, 4 Stream Flows [cfs]: 232.0 Summer (July-Sept) 20th Percentile 6.5 Fall (Oct-Dec) 20th Percentile 16.0 Winter (Jan-Mar) 20th Percentile 27.5 Spring (Apr-June) 20th Percentile 91.4 Average Stream TDS Values: 284.8 Summer (July-Sept) Average 434.5 Fall (Oct-Dec) Average 508.0 Winter (Jan-Mar) Average 372.4 Spring (Apr-June) Average **Effluent Limits: WQ Standard:** Flow, MGD: 0.45 MGD **Design Flow** BOD, mg/l: 45.0 Summer 5.0 Indicator Dissolved Oxygen, mg/l 5.0 Summer 6.5 30 Day Average TNH3, Chronic, mg/l: 301.6 Summer Varies Function of pH and Temperature TDS, mg/l: 306200.9 Summer 1200.0 **Modeling Parameters:** Acute River Width: 50.0% Chronic River Width: 94.4% Plume Model Used Level 1 Antidegradation Level Completed: Level II Review is required. Receiving waterbody is a class 1C drinking w Date: 7/6/2015 Permit Writer: WLA by: WQM Sec. Approval: TMDL Sec. Approval: WASTELOAD ANALYSIS [WLA] Addendum: Statement of Basis 6-Jul-15 4:00 PM Facilities: Morgan Lagoons Discharging to: Weber River ### THIS IS A DRAFT DOCUMENT UPDES No: UT-0020813 #### I. Introduction Wasteload analyses are performed to determine point source effluent limitations necessary to maintain designated beneficial uses by evaluating projected effects of discharge concentrations on in-stream water quality. The wasteload analysis also takes into account downstream designated uses [R317-2-8, UAC]. Projected concentrations are compared to numeric water quality standards to determine acceptability. The anti-degradation policy and procedures are also considered. The primary in-stream parameters of concern may include metals (as a function of hardness), total dissolved solids (TDS), total residual chlorine (TRC), un-ionized ammonia (as a function of pH and temperature, measured and evaluated interms of total ammonia), and dissolved oxygen. Mathematical water quality modeling is employed to determine stream quality response to point source discharges. Models aid in the effort of anticipating stream quality at future effluent flows at critical environmental conditions (e.g., low stream flow, high temperature, high pH, etc). The numeric criteria in this wasteload analysis may always be modified by narrative criteria and other conditions determined by staff of the Division of Water Quality. #### II. Receiving Water and Stream Classification Weber River: 1C. 2B. 3A. 4 Antidegradation Review: Level I review completed. Level II review required. ### III. Numeric Stream Standards for Protection of Aquatic Wildlife Total Ammonia (TNH3) Varies as a function of Temperature and pH Rebound. See Water Quality Standards Chronic Total Residual Chlorine (TRC) 0.011 mg/l (4 Day Average) 0.019 mg/l (1 Hour Average) Chronic Dissolved Oxygen (DO) 6.50 mg/l (30 Day Average) 5.00 mg/l (7Day Average) 4.00 mg/l (1 Day Average Maximum Total Dissolved Solids 1200.0 mg/l ### Acute and Chronic Heavy Metals (Dissolved) | _ | 4 Day Average (Chronic | 1 Hour Ave | e) Standard | | | |--------------|------------------------|---------------|---------------|------|----------------| | Parameter | Concentration | Load* | Concentration | - , | Load* | | Aluminum | 87.00 ug/l** | 0.211 lbs/day | 750.00 | ug/l | 1.819 lbs/day | | Arsenic | 190.00 ug/l | 0.461 lbs/day | 340.00 | ug/l | 0.825 lbs/day | | Cadmium | 0.61 ug/l | 0.001 lbs/day | 6.52 | ug/l | 0.016 lbs/day | | Chromium III | 212.03 ug/l | 0.514 lbs/day | 4436.14 | ug/l | 10.760 lbs/day | | ChromiumVI | 11.00 ug/l | 0.027 lbs/day | 16.00 | ug/l | 0.039 lbs/day | | Соррег | 23.87 ug/l | 0.058 lbs/day | 39.44 | ug/l | 0.096 lbs/day | | Iron | Α | • | 1000.00 | ug/l | 2.426 lbs/day | | Lead | 12.89 ug/l | 0.031 lbs/day | 330.88 | ug/l | 0.803 lbs/day | | Mercury | 0.0120 ug/l | 0.000 lbs/day | 2.40 | ug/l | 0.006 lbs/day | | Nickel | 132.21 ug/l | 0.321 lbs/day | 1189.11 | ug/l | 2.884 lbs/day | | Selenium | 4.60 ug/l | 0.011 lbs/day | 20.00 | ug/l | 0.049 lbs/day | | Silver | N/A ug/l | N/A lbs/day | 25.07 | ug/l | 0.061 lbs/day | | Zinc | 304.11 ug/l | 0.738 lbs/day | 304.11 | ug/l | 0.738 lbs/day | | * Allow | ed below discharge | • | | 3, . | on oo morady | ^{**}Chronic Aluminum standard applies only to waters with a pH < 7.0 and a Hardness < 50 mg/l as CaCO3 Metals Standards Based upon a Hardness of 300.2 mg/l as CaCO3 ### Organics [Pesticides] | angument to compressol | | × × | | | | | | |------------------------|--------------|----------|---------------|---------|---------------|-------------|---------------| | - 6 | 4 Day Averag | ge (Chro | nic) Standard | | 1 Hour Ave | rage (Acute | e) Standard | | Parameter | Concen | tration | Lo | ad* | Concentration | | Load* | | Aldrin | | | | | 1.500 | ug/l | 0.004 lbs/day | | Chlordane | 0.004 | ug/l | 5.094 | lbs/day | 1.200 | ug/l | 0.003 lbs/day | | DDT, DDE | 0.001 | ug/l | 1.185 | lbs/day | 0.550 | ug/l | 0.001 lbs/day | | Dieldrin | 0.002 | ug/l | | lbs/day | 1.250 | ug/l | 0.003 lbs/day | | Endosulfan | 0.056 | ug/l | | lbs/day | 0.110 | ug/l | 0.000 lbs/day | | Endrin | 0.002 | ug/l | 2.725 | lbs/day | 0.090 | ug/l | 0.000 lbs/day | | Guthion | | | 11 W | · | 0.010 | ug/l | 0.000 lbs/day | | Heptachlor | 0.004 | ug/l | 4.502 | lbs/day | 0.260 | ∘ug/l | 0.001 lbs/day | | Lindane | 0.080 | ug/l | 94.771 | lbs/day | 1.000 | ug/l | 0.002 lbs/day | | Methoxychlor | | | | • | 0.030 | ug/l | 0.000 lbs/day | | Mirex | | | | | 0.010 | ug/l | 0.000 lbs/day | | Parathion | | | | | 0.040 | ug/l | 0.000 lbs/day | | PCB's | 0.014 | ug/i | 16.585 | lbs/day | 2.000 | ug/l | 0.005 lbs/day | | Pentachlorophenol. | 13.00 | ug/l | 15400.325 | lbs/day | 20,000 | ug/l | 0.049 lbs/day | | Toxephene | 0.0002 | ug/l | 0.237 | lbs/day | 0.7300 | ug/l | 0.002 lbs/day | | IV. Numeric Stream Stan | | • | | | |-------------------------|-------------------------|----------|--------------------|----------------| | 4 | Day Average (Chronic) § | Standard | 1 Hour Average (Ad | :ute) Standard | | | Concentration | Load* | Concentration | Load* | | Arsenic | | | 100.0 ug/l | lbs/day | | Boron | | | 750.0 ug/l | 0.91 lbs/day | | Cadmium | | | 10.0 ug/l | 0.01 lbs/day | | Chromium | | | 100.0 ug/l | lbs/day | | Copper | | | 200.0 ug/l | lbs/day | | Lead | | | 100.0 ug/l | lbs/day | | Selenium | | | 50.0 ug/l | lbs/day | | TDS, Summer | | | 1200.0 mg/l | 1.46 tons/day | ### V. Numeric Stream Standards for Protection of Human Health (Class 1C Waters) | | idalus ioi Protection oi r | • | • | | | |------------------------|----------------------------|----------|---------------|------------|------------------| | 4 | Day Average (Chronic) : | Standard | 1 Hour | Average (/ | Acute) Standard | | Metals | Concentration | Load* | Concentration | on | Load* | | Arsenic | | | 50.0 | ug/l | 59.232 lbs/day | | Barium | | k) | 1000.0 | ug/l | 1184.640 lbs/day | | Cadmium | | | 10.0 | ug/l | 11.846 lbs/day | | Chromium | | | 50.0 | ug/l | 59.232 lbs/day | | Lead | | | 50.0 | ug/l | 59.232 lbs/day | | Mercury | | | 2.0 | ug/l | 2.369 lbs/day | | Selenium | | | 10.0 | ug/l | 11.846 lbs/day | | Silver | | | 50.0 | ug/l | 59.232 lbs/day | | Fluoride (3) | | | 1.4 | ug/l | 1.658 lbs/day | | to | | | 2.4 | ug/l | 2.843 lbs/day | | Nitrates as N | | 1.5 | 10.0 | ug/l | 11.846 lbs/day | | Chlorophenoxy Herbici | des | | | × | | | 2,4-D | | | 100.0 | ug/l | 118.464 lbs/day | | 2,4,5-TP | | | 10.0 | ug/l | 11.846 lbs/day | | Endrin | | | 0.2 | ug/l | 0.237 lbs/day | | ocyclohexane (Lindane) | | | 4.0 | ug/l | 4.739 lbs/day | | Methoxychlor | | | 100.0 | ug/l | 118.464 lbs/day | | Toxaphene | 34 | | 5.0 | ug/l | 5.923 lbs/day | ### VI. Numeric Stream Standards the Protection of Human Health from Water & Fish Consumption [Toxics] ### Maximum Conc., ug/l - Acute Standards | | | | , | | | |------------------------|----------------------|--------------------------------------|---|-------|------------------| | | Class 1C | | | A, 3B | | | Toxic Organics | [2 Liters/Day for 70 | [6.5 g for 70 Kg Person over 70 Yr.] | | | | | Acenaphthene | 1200.00 ug/l | 1421.57 lbs/day | 2700.0 | ug/l | 3198.53 lbs/day | | Acrolein | 320.00 ug/l | 379.08 lbs/day | 780.0 | ug/l | 924.02 lbs/day | | Acrylonitrile | 0.06 ug/l | 0.07 lbs/day | 0.7 | ug/l | 0.78 lbs/day | | Benzene | 1.20 ug/l | 1.42 lbs/day | 71.0 | ug/l | 84.11 lbs/day | | Benzidine | 0.00012 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | Carbon tetrachloride | 0.25 ug/l | 0.30 lbs/day | 4.4 | ug/l | 5.21 lbs/day | | Chiorobenzene | 680.00 ug/l | 805.56 lbs/day | 21000.0 | ug/l | 24877.45 lbs/day | | 1,2,4-Trichlorobenzene | | | | | | | Hexachlorobenzene | 0.00075 ug/l | 0.00 lbs/day | 0.0 | ug/l | 0.00 lbs/day | | 1,2-Dichloroethane | 0.38 ug/l | 0.45 lbs/day | 99.0 | ug/l | 117.28 lbs/day | | | | | | | | | 4 4 4 Triablementhers | | | | | | | | | | |--|---------|------|---------|--------------|----------|------|--------------|--------|--| | 1,1,1-Trichloroethane Hexachloroethane | 4.00 | // | 0.05 | II (-I - · · | | | | | | | 1,1-Dichloroethane | 1.90 | ug/l | 2.25 | lbs/day | 8.9 | ug/l | 10.54 I | bs/day | | | • | 0.64 | // | 0.70 | Us a false. | 40.0 | | | | | | 1,1,2-Trichloroethane | 0.61 | _ | | lbs/day | 42.0 | - | 49.75 | | | | 1,1,2,2-Tetrachloroethai
Chloroethane | 0.17 | ug/i | 0.20 | lbs/day | 11.0 | • | 13.03 | | | | | 0.00 | # | 2.24 | | - 0.0 | _ | | bs/day | | | Bis(2-chloroethyl) ether | 0.03 | | | lbs/day | | ug/l | | bs/day | | | 2-Chloroethyl vinyl ether | 0.00 | | | lbs/day | | ug/l | | bs/day | | | 2-Chloronaphthalene | 1700.00 | _ | 2013.89 | • | 4300.0 | _ | 5093.95 | | | | 2,4,6-Trichlorophenol | 2.10 | ug/I | 2.49 | lbs/day | 6.5 | ug/l | | bs/day | | | p-Chloro-m-cresol | | | | | 0.0 | • | | bs/day | | | Chloroform (HM) | 5.70 | • | | lbs/day | 470.0 | _ | 556.78 | • | | | 2-Chlorophenol | 120.00 | • | | lbs/day | 400.0 | ug/l | 473.86 I | • | | | 1,2-Dichlorobenzene | 2700.00 | _ | 3198.53 | • | 17000.0 | ug/i | 20138.89 l | | | | 1,3-Dichlorobenzene | 400.00 | | | lbs/day | 2600,0 | ug/l | ₃ 3080.06 ∥ | | | | 1,4-Dichlorobenzene | 400.00 | | | lbs/day | 2600.0 | ug/l | 3080.06 | | | | 3,3'-Dichlorobenzidine | 0.04 | | | lbs/day | 0.1 | ug/l | 0.09 1 | bs/day | | | 1,1-Dichloroethylene | 0.06 | _ | | lbs/day | 3.2 | ug/l | 3.79 | bs/day | | | 1,2-trans-Dichloroethyle | 700.00 | _ | | lbs/day | 0.0 | ug/l | | bs/day | | | 2,4-Dichlorophenol | 93.00 | • | 110.17 | • | 790.0 | ug/l | 935.87 | bs/day | | | 1,2-Dichloropropane | 0.52 | | | ibs/day | 39.0 | ug/l | 46.20 II | bs/day | | | 1,3-Dichloropropylene | 10.00 | | | lbs/day | 1700.0 | ug/l | 2013.89 | bs/day | | | 2,4-Dimethylphenol | 540.00 | | 639.71 | • | 2300.0 | ug/l | 2724.67 II | bs/day | | | 2,4-Dinitrotoluene | 0.11 | | | lbs/day | 9.1 | ug/l | 10.78 li | bs/day | | | 2,6-Dinitrotoluene | 0.00 | | | lbs/day | 0.0 | ug/l | 0.00 1 | bs/day | | | 1,2-Diphenylhydrazine | 0.04 | | | lbs/day | 0.5 | ug/l | | bs/day | | | Ethylbenzene | 3100.00 | | 3672.39 | | 29000.0 | ug/l | 34354.57 II | bs/day | | | Fluoranthene | 300.00 | ug/l | 355.39 | lbs/day | 370.0 | ug/l | 438.32 II | bs/day | | | 4-Chlorophenyl phenyl ether | | | | - | | | | _ | | | 4-Bromophenyl phenyl ether | | | | | | | | | | | Bis(2-chloroisopropyl) e | 1400.00 | _ | 1658.50 | • | 170000.0 | ug/l | 201388.86 II | bs/day | | | Bis(2-chloroethoxy) met | 0.00 | _ | | lbs/day | 0.0 | ug/l | 0.00 | bs/day | | | Methylene chloride (HM | 4.70 | • | | lbs/day | 1600.0 | ug/l | 1895.42 II | bs/day | | | Methyl chloride (HM) | 0.00 | | | lbs/day | 0.0 | ug/l | 0.00 | bs/day | | | Methyl bromide (HM) | 0.00 | | | lbs/day | | ug/l | 0.00 | | | | Bromoform (HM) | 4.30 | _ | | lbs/day | 360.0 | ug/l | 426.47 II | bs/day | | | Dichlorobromomethane | 0.27 | | | lbs/day | 22.0 | ug/l | 26.06 II | bs/day | | | Chlorodibromomethane | 0.41 | | 0.49 | lbs/day | 34.0 | ug/l | 40.28 | | | | Hexachlorobutadiene(c) | 0.44 | | 0.52 | lbs/day | 50.0 | ug/l | 59.23 II | bs/day | | | Hexachlorocyclopentadi | 240.00 | • | 284.31 | lbs/day | 17000.0 | ug/l | 20138.89 | os/day | | | Isophorone | 8.40 | ug/l | 9.95 | lbs/day | 600.0 | ug/l | 710.78 II | os/day | | | Naphthalene | | | | | | | | Ť | | | Nitrobenzene | 17.00 | ug/l | 20.14 | lbs/day | 1900.0 | ug/l | 2250.82 lb | os/day | | | 2-Nitrophenol | 0.00 | • | 0.00 | lbs/day | | ug/l | 0.00 1 | • | | | 4-Nitrophenol | 0.00 | ug/l | 0.00 | lbs/day | | ug/l | 0.00 1 | • | | | 2,4-Dinitrophenol | 70.00 | | 82.92 | lbs/day | | _ | 16584.97 lk | • | | | 4,6-Dinitro-o-cresol | 13.00 | ug/l | 15.40 | lbs/day | 765.0 | _ | 906.25 1 | | | | N-Nitrosodimethylamine | 0.00069 | | | lbs/day | | - | 9.60 lt | | | | N-Nitrosodiphenylamine | 5.00 | ug/l | | lbs/day | 16.0 | _ | 18.95 lk | | | | N-Nitrosodi-n-propylami | 0.01 | ug/l | | lbs/day | | ug/l | 1.66 lk | - | | | Pentachlorophenol | 0.28 | ug/l | | lbs/day | 8.2 | | 9.71 lk | • | | | | | | | • | | - | | | | | | | 0 | | | |--------------------------|----------------|------------------|--------------|---------------------| | Phenol | 2.10E+04 ug/l | 2.49E+04 lbs/day | 4.6E+06 ug/ | • | | Bis(2-ethylhexyl)phthala | 1.80 ug/l | 2.13 lbs/day | 5.9 ug/ | | | Butyl benzyl phthalate | 3000.00 ug/l | 3553.92 lbs/day | 5200.0 ug/ | _ | | Di-n-butyl phthalate | 2700.00 ug/l | 3198.53 lbs/day | 12000.0 ug/ | 1 14215.68 lbs/day | | Di-n-octyl phthlate | | | | | | Diethyl phthalate | 23000.00 ug/l | 27246.73 lbs/day | 120000.0 ug/ | l 142156.85 lbs/day | | Dimethyl phthlate | 3.13E+05 ug/l | 3.71E+05 lbs/day | 2.9E+06 ug/ | 1 3.44E+06 lbs/day | | Benzo(a)anthracene (P/ | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/ | l 0.04 lbs/day | | Benzo(a)pyrene (PAH) | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/ | 1 0.04 lbs/day | | Benzo(b)fluoranthene (F | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/ | i 0.04 lbs/day | | Benzo(k)fluoranthene (F | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/ | 0.04 lbs/day | | Chrysene (PAH) | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/ | 0.04 lbs/day | | Acenaphthylene (PAH) | • | | (4) | _ | | Anthracene (PAH) | 9600.00 ug/l | 11372,55 lbs/day | 0.0 ug/ | 0.00 lbs/day | | Dibenzo(a,h)anthracene | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/ | • | | Indeno(1,2,3-cd)pyrene | 0.0028 ug/l | 0.00 lbs/day | 0.0 ug/ | | | Pyrene (PAH) | 960.00 ug/l | 1137.25 lbs/day | 11000.0 ug/ | | | Tetrachloroethylene | 0.80 ug/l | 0.95 lbs/day | 8.9 ug/ | _ | | Toluene | 6800.00 ug/l | 8055.55 lbs/day | 200000 ug/ | | | Trichloroethylene | 2.70 ug/l | 3.20 lbs/day | 81.0 ug/ | | | Vinyl chloride | 2.70 ug/l | 2.37 lbs/day | 525.0 ug/ | - | | Viriyi Cilionde | 2.00 ug/i | 2.07 ibarday | 0.0 | 0.00 lbs/day | | Pesticides | | | 0.0 | 0.00 lbs/day | | Aldrin | 0.0001 ug/l | 0.00 lbs/day | 0.0 ug/ | | | · Dieldrin | 0.0001 ug/l | 0.00 lbs/day | 0.0 ug/ | | | | 0.0001 ug/l | 0.00 lbs/day | 0.0 ug/ | • | | Chlordane | 0.0006 ug/l | 0.00 lbs/day | 0.0 ug/ | | | 4,4'-DDT | _ | - | _ | | | 4,4'-DDE | 0.0006 ug/l | 0.00 lbs/day | 0.0 ug | | | 4,4'-DDD | 0.0008 ug/l | 0.00 lbs/day | 0.0 ug | • | | alpha-Endosulfan | 0.9300 ug/l | 1.10 lbs/day | 2.0 ug | • | | beta-Endosulfan | 0.9300 ug/l | 1.10 lbs/day | 2.0 ug | | | Endosulfan sulfate | 0.9300 ug/l | 1.10 lbs/day | 2.0 ug | | | Endrin | 0.7600 ug/l | 0.90 lbs/day | 0.8 ug | | | Endrin aldehyde | 0.7600 ug/l | 0.90 lbs/day | 0.8 ug | _ | | Heptachlor | 0.0002 ug/l | 0.00 lbs/day | 0.0 ug | /I 0.00 lbs/day | | Heptachlor epoxide | | | | | | PCB's | | | | | | PCB 1242 (Arochlor 124 | 0.000044 ug/l | 0.00 lbs/day | 0.0 ug | /I 0.00 lbs/day | | PCB-1254 (Arochlor 128 | 0.000044 ug/l | 0.00 lbs/day | 0.0 ug | | | PCB-1221 (Arochlor 122 | 0.000044 ug/l | 0.00 lbs/day | 0.0 ug | | | PCB-1232 (Arochlor 123 | 0.000044 ug/l | 0.00 lbs/day | 0.0 ug | - | | PCB-1248 (Arochlor 124 | 0.000044 ug/l | 0.00 lbs/day | 0.0 ug | • | | PCB-1260 (Arochlor 126 | 0.000044 ug/l | 0.00 lbs/day | 0.0 ug | | | PCB-1200 (Arochlor 12) | 0.000044 ug/l | 0.00 lbs/day | 0.0 ug | | | , SE-TOTO (ATOOINOT TO | J. 4000 77 Mg/ | • | 2.2 ug | | | Pesticide | | | | ή
 | | Toxaphene | 0.000750 ug/l | 0.00 | 0.0 ug | /I 0.00 lbs/day | | Dioxin | | | | | | Dioxin (2,3,7,8-TCDD) | 1.30E-08 ug/l | 0.00 lbs/day | 1.40E-08 | 0.00 | | | • | • | | | | Metals | | | | | |----------------|---------------|------------------|---------------|-------------------| | Antimony | 14.0 ug/l | 16.58 lbs/day | | | | Arsenic | 50.0 ug/l | 59.23 lbs/day | 4300.00 ug/l | 5093.95 lbs/day | | Asbestos | 7.00E+06 ug/l | 8.29E+06 lbs/day | root.oo agn | 0000.00 lbs/day | | Beryllium | | | | | | Cadmium | | | | | | Chromium (III) | | | | | | Chromium (VI) | | | | | | Copper | | | | | | Cyanide | 1.30E+03 ug/l | 1540.03 lbs/day | 2.2E+05 ug/l | 260620.88 lbs/day | | Lead | 700.0 ug/l | 829.25 lbs/day | Lizz. 00 agri | 200020.00 lbs/day | | Mercury | | 0_0.10 /100/day | .0.15 ug/l | 0.18 lbs/day | | Nickel | | | 4600.00 ug/l | 5449.35 lbs/day | | Selenium | 0.1 ug/l | 0.17 lbs/day | -000.00 ug/i | 5449.55 lbs/day | | Silver | 610.0 ug/l | 722.63 lbs/day | | | | Thallium | 2 70,70 ag/1 | . 22.30 lb3/day | 6.30 ug/l | 7.46 lba/day | | Zinc | | | 0.50 ug/i | 7.46 lbs/day | There are additional standards that apply to this receiving water, but were not considered in this modeling/waste load allocation analysis. ### VII. Mathematical Modeling of Stream Quality Model configuration was accomplished utilizing standard modeling procedures. Data points were plotted and coefficients adjusted as required to match observed data as closely as possible. The modeling approach used in this analysis included one or a combination of the following models. - (1) The Utah River Model, Utah Division of Water Quality, 1992. Based upon STREAMDO IV (Region VIII) and Supplemental Ammonia Toxicity Models; EPA Region VIII, Sept. 1990 and QUAL2E (EPA, Athens, GA). - (2) Utah Ammonia/Chlorine Model, Utah Division of Water Quality, 1992. - (3) AMMTOX Model, University of Colorado, Center of Limnology, and EPA Region 8 - (4) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644. Coefficients used in the model were based, in part, upon the following references: (1) Rates, Constants, and Kinetics Formulations in Surface Water Quality Modeling. Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens Georgia. EPA/600/3-85/040 June 1985. (2) Principles of Surface Water Quality Modeling and Control. Robert V. Thomann, et.al. Harper Collins Publisher, Inc. 1987, pp. 644. #### VIII. Modeling Information The required information for the model may include the following information for both the upstream conditions at low flow and the effluent conditions: Flow, Q, (cfs or MGD) D.O. mg/l Temperature, Deg. C. Total Residual Chlorine (TRC), mg/l pН Total NH3-N, mg/l BOD5, mg/l Total Dissolved Solids (TDS), mg/l Metals, ug/l Toxic Organics of Concern, ug/l #### **Other Conditions** In addition to the upstream and effluent conditions, the models require a variety of physical and biological coefficients and other technical information. In the process of actually establishing the permit limits for an effluent, values are used based upon the available data, model calibration, literature values, site visits and best professional judgement. #### **Model Inputs** The following is upstream and discharge information that was utilized as inputs for the analysis. Dry washes are considered to have an upstream flow equal to the flow of the discharge. ### Current Upstream Information Stream Critical Low | | Critical Low | | | | | | | | |------------------------|--------------|--------------|--------|-----------|--------|---------|-------|---------| | T 7 | Flow | Temp. | рН | T-NH3 | BOD5 | DO | TRC | TDS | | | cfs | Deg. C | | mg/l as N | mg/l | mg/l | mg/l | mg/l | | Summer (Irrig. Season) | 232.0 | 1 7.9 | 8.4 | 0.04 | 1.00 | 7.00 | 0.00 | 284.8 | | Fall | | 7.8 | 8.4 | 0.03 | 1.00 | | 0.00 | 434.5 | | Winter | 16.0 | 3.1 | 8.2 | 0.04 | 1.00 | (00000) | 0.00 | 434.5 | | Spring | 27.5 | 10.5 | 8.3 | 0.03 | 1.00 | (1888) | 0.00 | 434.5 | | Dissolved | Al | As | Cd | Crill | CrVI | Copper | Fe | Pb | | Metals | ug/l | All Seasons | - | 0.53* | 0.053* | 0.53* | 2.65* | 0.53* | 0.83* | 0.53* | | Dissolved | Hg | Ni | Se | Ag | Zn | Boron | | | | Metals | | ug/l | ug/l | ug/l | ug/l | ug/l | | | | All Seasons | _ | 0.53* | 1.06* | 0.1* | 0.053* | 10.0 | * | 1/2 MDL | #### **Projected Discharge Information** | Season | Flow,
MGD | Temp. | TDS
mg/l | TDS
tons/day | |--------|--------------|-------|-------------|-----------------| | Summer | 0.45000 | 17.0 | 614.40 | 1.15269 | | Fall | 0.45000 | 12.0 | | | | Winter | 0.45000 | 4.0 | | | | Spring | 0.45000 | 12.0 | | | All model numerical inputs, intermediate calculations, outputs and graphs are available for discussion, inspection and copy at the Division of Water Quality. #### IX. Effluent Limitations Current State water quality standards are required to be met under a variety of conditions including in-stream flows targeted to the 7-day, 10-year low flow (R317-2-9). Other conditions used in the modeling effort coincide with the environmental conditions expected at low stream flows. ### Effluent Limitation for Flow based upon Water Quality Standards In-stream criteria of downstream segments will be met with an effluent flow maximum value as follows: | Season | Daily Average |) | |--------|---------------|-----------| | Summer | 0.450 MGD | 0.696 cfs | | Fall | 0.450 MGD | 0.696 cfs | | Winter | 0.450 MGD | 0.696 cfs | | Spring | 0.450 MGD | 0.696 cfs | #### Flow Requirement or Loading Requirement The calculations in this wasteload analysis utilize the maximum effluent discharge flow of 0.45 MGD. If the discharger is allowed to have a flow greater than 0.45 MGD during 7Q10 conditions, and effluent limit concentrations as indicated, then water quality standards will be violated. In order to prevent this from occuring, the permit writers must include the discharge flow limitiation as indicated above; or, include loading effluent limits in the permit. ### Effluent Limitation for Whole Effluent Toxicity (WET) based upon WET Policy Effluent Toxicity will not occur in downstream segements if the values below are met. | WET Requirements | LC50 > | 2.0% Effluent | [Acute] | |------------------|--------|---------------|-----------| | | IC25 > | 0.3% Effluent | [Chronic] | ### Effluent Limitation for Biological Oxygen Demand (BOD) based upon Water Quality Standards or Regulations In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent BOD limitation as follows: | Season | Concentration | | |--------|-------------------|---------------| | Summer | 45.0 mg/l as BOD5 | 168.9 lbs/day | | Fall | 45.0 mg/l as BOD5 | 168.9 lbs/day | | Winter | 45.0 mg/l as BOD5 | 168.9 lbs/day | | Spring | 45.0 mg/l as BOD5 | 168.9 lbs/day | ### Effluent Limitation for Dissolved Oxygen (DO) based upon Water Quality Standards In-stream criteria of downstream segments for Dissolved Oxygen will be met with an effluent D.O. limitation as follows: | Season | Concentration | |--------|---------------| | Summer | 5.00 | | Fall | 5.00 | | Winter | 5.00 | | Spring | 5.00 | ### Effluent Limitation for Total Ammonia based upon Water Quality Standards In-stream criteria of downstream segments for Total Ammonia will be met with an effluent limitation (expressed as Total Ammonia as N) as follows: | Seas | on | | | | | |--------|-------------------|-------|-----------|---------|---------| | | Load | l | | | | | Summer | 4 Day Avg Chronic | 301.6 | mg/l as N | 1,131.8 | lbs/day | | | 1 Hour Avg Acute | 285.4 | mg/l as N | 1,070.8 | lbs/day | | Fall | 4 Day Avg Chronic | 51.5 | mg/l as N | 193.1 | lbs/day | | | 1 Hour Avg Acute | 42.7 | mg/l as N | 160.1 | lbs/day | | Winter | 4 Day Avg Chronic | 38.9 | mg/l as N | 145.9 | lbs/day | | | 1 Hour Avg Acute | 35.3 | mg/l as N | 132.4 | lbs/day | | Spring | 4 Day Avg Chronic | 13.5 | mg/l as N | 50.7 | lbs/day | | | 1 Hour Avg Acute | 14.0 | mg/l as N | 52.5 | lbs/day | Acute limit calculated with an Acute Zone of Initial Dilution (ZID) to be equal to 50.%. ### Effluent Limitation for Total Residual Chlorine based upon Water Quality Standards In-stream criteria of downstream segments for Total Residual Chlorine will be met with an effluent limitation as follows: | Season | | Concentration | | Load | | |--------|-------------------|---------------|------|--------|---------| | Summer | 4 Day Avg Chronic | 4.880 | mg/l | 18.31 | lbs/day | | | 1 Hour Avg Acute | 4.659 | mg/l | 17.48 | lbs/day | | Fali | 4 Day Avg Chronic | 0.147 | mg/l | 0.55 | lbs/day | | | 1 Hour Avg Acute | 0.149 | mg/l | 0.56 | lbs/day | | Winter | 4 Day Avg Chronic | 0.347 | mg/l | 1.30 | lbs/day | | | 1 Hour Avg Acute | 0.339 | mg/l | . 1.27 | lbs/day | | Spring | 4 Day Avg Chronic | 0.588 | mg/l | 0.00 | lbs/day | | | 1 Hour Avg Acute | 0.569 | mg/l | 0.00 | lbs/day | ### Effluent Limitations for Total Dissolved Solids based upon Water Quality Standards | Season | | Concentration | | Load | Load | | |------------------------------------|---|--|------------------------------|--------------------------------------|----------------------------------|--| | Summer
Fall
Winter
Spring | Maximum, Acute
Maximum, Acute
Maximum, Acute
4 Day Avg Chronic | 306200.9
256311.7
231817.0
277007.2 | mg/l
mg/l
mg/l
mg/l | 574.47
480.87
434.92
519.70 | tons/day
tons/day
tons/day | | | Colorado S | alinity Forum Limits | Determine | d by Permi | tting Section | | | ## Effluent Limitations for Total Recoverable Metals based upon Water Quality Standards In-stream criteria of downstream segments for Dissolved Metals will be met with an effluent limitation as follows (based upon a hardness of 300.2 mg/l): | | | 4 Day A | verage | | 1 Hour | Average | | |-------------------------|----------------------|--------------|--------------|--------------------|-----------------------|--------------|-------------------------------| | 02 | Concen | tration | Æ Lo | oad | Concentration | | Load | | Aluminum
Arsenic | N/A
59,734.63 | ua/l | N/A
144 9 | lbs/day | 125,325.7
56,862.0 | ug/l | 304.0 lbs/day | | Cadmium
Chromium III | 167.90
66,690.60 | ug/l
ug/l | 0.4 | lbs/day
lbs/day | 1,080.0 | ug/l
ug/l | 137.9 lbs/day
2.6 lbs/day | | Chromium VI
Copper | 2,221.84
7,284.50 | ug/l | 5.4 | lbs/day | 743,500.3
2,019.7 | ug/l
ug/l | 1803.4 lbs/day
4.9 lbs/day | | Iron | N/A | ug/l | N/A | | 6,478.6
167,422.5 | ug/l
ug/l | 15.7 lbs/day
406.1 lbs/day | | Lead
Mercury | 3,820.57 | ug/l
ug/l | 0.0 | lbs/day
lbs/day | 55,333.5
402.3 | ug/l
ug/l | 134.2 lbs/day
1.0 lbs/day | | Nickel
Selenium | 951.88 | ug/l | | lbs/day
lbs/day | 199,198.9
3,087.7 | ug/l
ug/l | 483.2 lbs/day
7.5 lbs/day | | Silver | N/A | ug/l | N/A | lbs/day | 4,202.4 | ug/l | 10.2 lbs/day | | Zinc | 95,984.21 ug/l | 232.8 lbs/day | 50,964.3 | ug/l | 123.6 lbs/day | |---------|----------------|---------------|----------|------|---------------| | Cyanide | 1,641.69 ug/l | 4.0 lbs/day | 3,687.9 | ug/l | 8.9 lbs/day | # Effluent Limitations for Heat/Temperature based upon Water Quality Standards | Summer | 100.0 Deg. C. | 212.0 Deg. F | |--------|---------------|--------------| | Fall | 19.1 Deg. C. | 66.4 Deg. F | | Winter | 28.1 Deg. C. | 82,6 Deg. F | | Spring | 52.0 Deg. C. | 125.6 Deg. F | # Effluent Limitations for Organics [Pesticides] Based upon Water Quality Standards In-stream criteria of downstream segments for Organics [Pesticides] will be met with an effluent limit as follows: | | 4 Day Average | | 1 Hour A | verage | | | |-------------------|---------------|------------------|---------------|--------|------------------|--| | | Concentration | Load | Concentration | • | Load | | | Aldrin | | | 1.5E+00 | ug/l | 5.63E-03 lbs/day | | | Chlordane | 4.30E-03 ug/l | 1.61E-02 lbs/day | 1.2E+00 | ug/l | 4.50E-03 lbs/day | | | DDT, DDE | 1.00E-03 ug/l | 3.75E-03 lbs/day | 5.5E-01 | ug/l | 2.06E-03 lbs/day | | | Dieldrin | 1.90E-03 ug/l | 7.13E-03 lbs/day | 1.3E+00 | ug/l | 4.69E-03 lbs/day | | | Endosulfan | 5.60E-02 ug/l | 2.10E-01 lbs/day | 1.1E-01 | ug/l | 4.13E-04 lbs/day | | | Endrin | 2.30E-03 ug/l | 8.63E-03 lbs/day | 9.0E-02 | ug/l | 3.38E-04 lbs/day | | | Guthion | 0.00E+00 ug/l | 0.00E+00 lbs/day | 1.0E-02 | ug/l | 3.75E-05 lbs/day | | | Heptachlor | 3.80E-03 ug/l | 1.43E-02 lbs/day | 2.6E-01 | ug/l | 9.76E-04 lbs/day | | | Lindane | 8.00E-02 ug/l | 3.00E-01 lbs/day | 1.0E+00 | ug/l | 3.75E-03 lbs/day | | | Methoxychlor | 0.00E+00 ug/l | 0.00E+00 lbs/day | 3.0E-02 | ug/l | 1.13E-04 lbs/day | | | Mirex | 0.00E+00 ug/l | 0.00E+00 lbs/day | 1.0E-02 | ug/l | 3.75E-05 lbs/day | | | Parathion | 0.00E+00 ug/l | 0.00E+00 ibs/day | 4.0E-02 | ug/l | 1.50E-04 lbs/day | | | PCB's | 1.40E-02 ug/l | 5.25E-02 lbs/day | 2.0E+00 | ug/l | 7.50E-03 lbs/day | | | Pentachlorophenol | 1.30E+01 ug/l | 4.88E+01 lbs/day | 2.0E+01 | ug/l | 7.50E-02 lbs/day | | | Toxephene | 2.00E-04 ug/l | 7.50E-04 lbs/day | 7.3E-01 | ug/i | 2.74E-03 lbs/day | | ## Effluent Targets for Pollution Indicators Based upon Water Quality Standards In-stream criteria of downstream segments for Pollution Indicators will be met with an effluent limit as follows: | | 1 Hour Average | | |------------------------|----------------|---------------| | ₫. | Concentration | Loading | | Gross Beta (pCi/l) | 50.0 pCi/L | | | BOD (mg/l) | 5.0 mg/l | 12.1 lbs/day | | Nitrates as N | 4.0 mg/l | 9.7 lbs/day | | Total Phosphorus as P | 0.05 mg/l | 0.1 lbs/day | | Total Suspended Solids | 90.0 mg/l | 218.3 lbs/day | Note: Pollution indicator targets are for information purposes only. # Effluent Limitations for Protection of Human Health [Toxics Rule] Based upon Water Quality Standards (Most stringent of 1C or 3A & 3B as appropriate.) In-stream criteria of downstream segments for Protection of Human Health [Toxics] will be met with an effluent limit as follows: | | Maximum Concentration | | | |---------------------------|-----------------------|------------------|--| | | Concentration | Load | | | Toxic Organics | | | | | Acenaphthene | 4.01E+05 ug/l | 1.51E+03 lbs/day | | | Acrolein | 1.07E+05 ug/l | 4.01E+02 lbs/day | | | Acrylonitrile | 1.97E+01 ug/l | 7.40E-02 lbs/day | | | Benzene | 4.01E+02 ug/l | 4 = 4 = 1 | | | Benzidine | ug/l | lbs/day | | | Carbon tetrachloride | 8.36E+01 ug/l | 3.14E-01 lbs/day | | | Chlorobenzene | 2.27E+05 ug/l | 8.53E+02 lbs/day | | | 1,2,4-Trichlorobenzene | 8 | • | | | Hexachlorobenzene | 2.51E-01 ug/l | 9.41E-04 lbs/day | | | 1,2-Dichloroethane | 1.27E+02 ug/l | 4.77E-01 lbs/day | | | 1,1,1-Trichloroethane | - | • | | | Hexachloroethane | 6.35E+02 ug/l | 2.38E+00 lbs/day | | | 1,1-Dichloroethane | - | • | | | 1,1,2-Trichloroethane | 2.04E+02 ug/l | 7.65E-01 lbs/day | | | 1,1,2,2-Tetrachloroethane | 5.68E+01 ug/l | 2.13E-01 lbs/day | | | Chloroethane | - | | | | Bis(2-chloroethyl) ether | 1.04E+01 ug/l | 3.89E-02 lbs/day | | | 2-Chloroethyl vinyl ether | _ | 16 · · · · · · · | | | 2-Chloronaphthalene | 5.68E+05 ug/l | 2.13E+03 lbs/day | | | 2,4,6-Trichlorophenol | 7.02E+02 ug/l | 2.63E+00 lbs/day | | | p-Chloro-m-cresol | #: II | • | | | Chloroform (HM) | 1.91E+03 ug/l | 7.15E+00 lbs/day | | | 2-Chlorophenol | 4.01E+04 ug/l | 1.51E+02 lbs/day | | | 1,2-Dichlorobenzene | 9.03E+05 ug/l | 3.39E+03 lbs/day | | | 1,3-Dichlorobenzene | 1.34E+05 ug/l | 5.02E+02 lbs/day | | | | = | • | | | 1,4-Dichlorobenzene | 1.34E+05 ug/l | 5.02E+02 lbs/day | |------------------------------|------------------|------------------| | 3,3'-Dichlorobenzidine | 1.34E+01 ug/l | 5.02E-02 lbs/day | | 1,1-Dichloroethylene | 1.91E+01 ug/l | 7.15E-02 lbs/day | | 1,2-trans-Dichloroethylene1 | | | | 2,4-Dichlorophenol | 3.11E+04 ug/l | 1.17E+02 lbs/day | | 1,2-Dichloropropane | 1.74E+02 ug/l | 6.52E-01 lbs/day | | 1,3-Dichloropropylene | 3.34E+03 ug/l | 1.25E+01 lbs/day | | 2,4-Dimethylphenol | 1.81E+05 ug/l | 6.77E+02 lbs/day | | 2,4-Dinitrotoluene | 3.68E+01 ug/l | 1.38E-01 lbs/day | | · | 5.00E 101 dg/l | 1.50L-01 Iberday | | 2,6-Dinitrotoluene | 1 345+01 | E OOE OO Iba/day | | 1,2-Diphenylhydrazine | 1.34E+01 ug/l | 5.02E-02 lbs/day | | Ethylbenzene | 1.04E+06 ug/l | 3.89E+03 lbs/day | | Fluoranthene | 1.00E+05 ug/l | 3.76E+02 lbs/day | | 4-Chlorophenyl phenyl ether | | | | 4-Bromophenyl phenyl ether | | | | Bis(2-chloroisopropyl) ether | 4.68E+05 ug/l | 1.76E+03 lbs/day | | Bis(2-chloroethoxy) methane | | | | Methylene chloride (HM) | 1.57E+03 ug/l | 5.89E+00 lbs/day | | Methyl chloride (HM) | | | | Methyl bromide (HM) | | | | Bromoform (HM) | 1.44E+03 ug/l | 5.39E+00 lbs/day | | Dichlorobromomethane(HM) | 9.03E+01 ug/l | 3.39E-01 lbs/day | | Chlorodibromomethane (HM) | 1.37E+02 ug/l | 5.14E-01 lbs/day | | Hexachlorocyclopentadiene | 8.02E+04 ug/l | 3.01E+02 lbs/day | | Isophorone | 2.81E+03 ug/l | 1.05E+01 lbs/day | | | 2.61E+03 ug/i | 1.00ETOT IDS/day | | Naphthalene | 5 005 : 00 ··- " | 0.40E+04 lb=/d=+ | | Nitrobenzene | 5.68E+03 ug/l | 2.13E+01 lbs/day | | 2-Nitrophenol | | | | 4-Nitrophenol | | | | 2,4-Dinitrophenol | 2.34E+04 ug/l | 8.78E+01 lbs/day | | 4,6-Dinitro-o-cresol | 4.35E+03 ug/l | 1,63E+01 lbs/day | | N-Nitrosodimethylamine | 2.31E-01 ug/l | 8.65E-04 lbs/day | | N-Nitrosodiphenylamine | 1.67E+03 ug/l | 6.27E+00 lbs/day | | N-Nitrosodi-n-propylamine | 1.67E+00 ug/l | 6.27E-03 lbs/day | | Pentachlorophenol | 9.36E+01 ug/l | 3.51E-01 lbs/day | | Phenol | 7.02E+06 ug/l | 2.63E+04 lbs/day | | Bis(2-ethylhexyl)phthalate | 6.02E+02 ug/l | 2.26E+00 lbs/day | | Butyl benzyl phthalate | 1.00E+06 ug/l | 3.76E+03 lbs/day | | Di-n-butyl phthalate | 9.03E+05 ug/l | 3.39E+03 lbs/day | | Di-n-octyl phthlate | 0.00E 00 ug/. | 0.002 00 100.00, | | Diethyl phthalate | 7.69E+06 ug/l | 2.88E+04 lbs/day | | Dimethyl phthlate | 1.05E+08 ug/l | 3.93E+05 lbs/day | | • • | - | | | Benzo(a)anthracene (PAH) | 9.36E-01 ug/l | 3.51E-03 lbs/day | | Benzo(a)pyrene (PAH) | 9.36E-01 ug/l | 3.51E-03 lbs/day | | Benzo(b)fluoranthene (PAH) | 9.36E-01 ug/l | 3.51E-03 lbs/day | | Benzo(k)fluoranthene (PAH) | 9.36E-01 ug/l | 3.51E-03 lbs/day | | Chrysene (PAH) | 9.36E-01 ug/l | 3.51E-03 lbs/day | | Acenaphthylene (PAH) | | | | Anthracene (PAH) | | | | Dibenzo(a,h)anthracene (PAH) | 9.36E-01 ug/l | 3.51E-03 lbs/day | | Indeno(1,2,3-cd)pyrene (PAH) | 9.36E-01 ug/l | 3.51E-03 lbs/day | | | | = | | Pyrene (PAH) Tetrachloroethylene Toluene Trichloroethylene Vinyl chloride | 3.21E+05 ug/l
2.67E+02 ug/l
2.27E+06 ug/l
9.03E+02 ug/l
6.69E+02 ug/l | 1.20E+03 lbs/day
1.00E+00 lbs/day
8.53E+03 lbs/day
3.39E+00 lbs/day
2.51E+00 lbs/day | |---|---|--| | Pesticides Aldrin Dieldrin Chlordane 4,4'-DDT 4,4'-DDE 4,4'-DDD alpha-Endosulfan beta-Endosulfan Endosulfan sulfate Endrin Endrin aldehyde Heptachlor Heptachlor epoxide | 4.35E-02 ug/l
4.68E-02 ug/l
1.91E-01 ug/l
1.97E-01 ug/l
1.97E-01 ug/l
2.77E-01 ug/l
3.11E+02 ug/l
3.11E+02 ug/l
3.11E+02 ug/l
2.54E+02 ug/l
2.54E+02 ug/l | 1.63E-04 lbs/day
1.76E-04 lbs/day
7.15E-04 lbs/day
7.40E-04 lbs/day
7.40E-03 lbs/day
1.04E-03 lbs/day
1.17E+00 lbs/day
1.17E+00 lbs/day
9.53E-01 lbs/day
9.53E-01 lbs/day
2.63E-04 lbs/day | | PCB's PCB 1242 (Arochlor 1242) PCB-1254 (Arochlor 1254) PCB-1221 (Arochlor 1221) PCB-1232 (Arochlor 1232) PCB-1248 (Arochlor 1248) PCB-1260 (Arochlor 1260) PCB-1016 (Arochlor 1016) Pesticide | 1.47E-02 ug/l
1.47E-02 ug/l
1.47E-02 ug/l
1.47E-02 ug/l
1.47E-02 ug/l
1.47E-02 ug/l
1.47E-02 ug/l | 5.52E-05 lbs/day
5.52E-05 lbs/day
5.52E-05 lbs/day
5.52E-05 lbs/day
5.52E-05 lbs/day
5.52E-05 lbs/day
5.52E-05 lbs/day | | Metals Antimony Arsenic Asbestos Beryllium Cadmium Chromium (III) Chromium (VI) Copper Cyanide Lead | 2.44E-01 ug/l
4679.66 ug/l
16448.13 ug/l
2.34E+09 ug/l
434539.96 ug/l
233983.06 ug/l
0.00 | 9.16E-04 lbs/day 17.56 lbs/day 61.72 lbs/day 8.78E+06 lbs/day 1630.50 lbs/day 877.96 lbs/day 0.00 | | Mercury Nickel Selenium Silver Thallium Zinc | 46.79 ug/l
203899.52 ug/l
0.00
0.00
568.24 ug/l | 0.18 lbs/day
765.08 lbs/day
0.00
0.00
2.13 lbs/day | Dioxin Dioxin (2,3,7,8-TCDD) 4.35E-06 ug/l 1.63E-08 lbs/day ### Metals Effluent Limitations for Protection of All Beneficial Uses Based upon Water Quality Standards and Toxics Rule | | Class 4 Acute Agricultural ug/l | Class 3 Acute Aquatic Wildlife ug/I | Acute Toxics Drinking Water Source ug/i | Acute
Toxics
Wildlife
ug/l | 1C Acute
Health
Criteria
ug/l | Acute
Most
Stringent
ug/l | Class 3
Chronic
Aquatic
Wildlife
ug/l | |----------------|---------------------------------|-------------------------------------|---|-------------------------------------|--|------------------------------------|---| | Aluminum | | 125325.7 | | | | 125325.7 | N/A | | Antimony | | | 4679.7 | 1437324.5 | | 4679.7 | | | Arsenic | 33426.2 | 56862.0 | 16448.1 | 54 | 0.0 | 16448.1 | 59734.6 | | Barium | | | | | 334261.5 | 334261.5 | | | Beryllium | | | | * | | 0.0 | | | Cadmium | 3316.1 | 1080.0 | | | 0.0 | 1080.0 | 167.9 | | Chromium (III) | 100 | 743500.3 | | | 0.0 | 743500.3 | 66690.6 | | Chromium (VI) | 33161.2 | 2019.7 | | | 0.0 | 2019.73 | 2221.84 | | Copper | 66587.4 | 6478.6 | 434540.0 | | | 6478.6 | 7284.5 | | Cyanide | | 3687.9 | ######## | | | 3687.9 | 1641.7 | | Iron | | 167422.5 | | | | 167422.5 | | | Lead | 33161.2 | 55333.5 | | | 0.0 | 33161.2 | 3820.6 | | Mercury | | 402.31 | 46.8 | 50.14 | 0.0 | 46.79 | 3.787 | | Nickel | | 199198.9 | 203899.5 | 1537602.9 | | 199198.9 | 41488.5 | | Selenium | 16183.2 | 3087.7 | | | 0.0 | 3087.7 | 951.9 | | Silver | | 4202.4 | | | 0.0 | 4202.4 | | | Thallium | | | 568.2 | 2105.8 | | 568.2 | | | Zinc | | 50964.3 | | | | 50964.3 | 95984.2 | | Boron | 250696.1 | | | | 578 | 250696.1 | | ### Summary Effluent Limitations for Metals [Wasteload Allocation, TMDL] [If Acute Is more stringent than Chronic, then the Chronic takes on the Acute value.] | | WLA Acute
ug/l | WLA Chronic
ug/l | | |----------------|-------------------|---------------------|----------------| | Aluminum | 125325.7 | N/A | | | Antimony | 4679.66 | | | | Arsenic | 16448.1 | 59734.6 | Acute Controls | | Asbestos | 2.34E+09 | | | | Barium | s | | *) | | Beryllium | | | | | Cadmium | 1080.0 | 167.9 | | | Chromium (III) | 743500.3 | 66691 | | | Chromium (VI) | 2019.7 | 2221.8 | Acute Controls | | Copper | 6478.6 | 7284.5 | Acute Controls | | Cyanide | 3687.9 | 1641.7 | 38 | |----------|-----------|---------|----------------| | Iron | 167422.5 | | | | Lead | 33161.2 | 3820.6 | | | Mercury | 46.795 | 3.787 | | | Nickel | 199198.9 | 41489 | | | Selenium | 3087.7 | 951.9 | | | Silver | 4202.4 | » N/A | | | Thallium | 568.2 | | | | Zinc | 50964.3 | 95984.2 | Acute Controls | | Boron | 250696.13 | | | Other Effluent Limitations are based upon R317-1. E. coli 126.0 organisms per 100 ml #### X. Antidegradation Considerations The Utah Antidegradation Policy allows for degradation of existing quality where it is determined that such lowering of water quality is necessary to accommodate important economic or social development in the area in which the waters are protected [R317-2-3]. It has been determined that certain chemical parameters introduced by this discharge will cause an increase of the concentration of said parameters in the receiving waters. Under no conditions will the increase in concentration be allowed to interfere with existing instream water uses. The antidegradation rules and procedures allow for modification of effluent limits less than those based strictly upon mass balance equations utilizing 100% of the assimilative capacity of the receiving water. Additional factors include considerations for "Blue-ribbon" fisheries, special recreational areas, threatened and endangered species, and drinking water sources. An Antidegradation Level I Review was conducted on this discharge and its effect on the receiving water. Based upon that review, it has been determined that an Antidegradation Level II Review is required because the receiving water is a class 1C drinking water source. #### XI. Colorado River Salinity Forum Considerations Discharges in the Colorado River Basin are required to have their discharge at a TDS loading of less than 1.00 tons/day unless certain exemptions apply. Refer to the Forum's Guidelines for additional information allowing for an exceedence of this value. #### XII. Summary Comments The mathematical modeling and best professional judgement indicate that violations of receiving water beneficial uses with their associated water quality standards, including important downstream segments, will not occur for the evaluated parameters of concern as discussed above if the effluent limitations indicated above are met. #### XIII. Notice of UPDES Requirement This Addendum to the Statement of Basis does not authorize any entity or party to discharge to the waters of the State of Utah. That authority is granted through a UPDES permit issued by the Utah Division of Water Quality. The numbers presented here may be changed as a function of other factors. Dischargers are strongly urged to contact the Permits Section for further information. Permit writers may utilize other information to adjust these limits and/or to determine other limits based upon best available technology and other considerations provided that the values in this wasteload analysis [TMDL] are not compromised. See special provisions in Utah Water Quality Standards for adjustments in the Total Dissolved Solids values based upon background concentration. ### THIS IS A DRAFT DOCUMENT Utah Division of Water Quality 801-538-6052 File Name: MorganLagoons_WLA_7-6-15 ### **APPENDIX - Coefficients and Other Model Information** | 2 | CBOD
Coeff.
(Kd)20
1/day
0.830 | CBOD
Coeff.
FORCED
(Kd)/day
0.000 | CBOD
Coeff.
(Ka)T
1/day
0.754 | REAER.
Coeff.
(Ka)20
(Ka)/day
3.989 | REAER.
Coeff.
FORCED
1/day
0.000 | REAER.
Coeff.
(Ka)T
1/day
3.795 | NBOD
Coeff.
(Kn)20
1/day
0.400 | NBOD
Coeff.
(Kn)T
1/day
0.340 | |---|--|--|---|---|--|---|--|---| | | Open
Coeff.
(K4)20
1/day
0.000 | Open
Coeff.
(K4)T
1/day ⁻
0.000 | NH3
LOSS
(K5)20
1/day
4.000 | NH3
(K5)T
1/day
3.632 | NO2+NO3
LOSS
(K6)20
1/day
0.000 | NO2+NO3
(K6)T
1/day
0.000 | TRC
Decay
K(Cl)20
1/day
32.000 | TRC K(CI)(T) 1/day 28.314 | | ç | BENTHIC
DEMAND
(SOD)20
gm/m2/day
1.000 | BENTHIC
DEMAND
(SOD)T
gm/m2/day
0.876 | | | | e. | | | | | K1
CBOD
{theta}
1.0 | K2
Reaer.
{theta}
1.0 | K3
NH3
{theta}
1.1 | K4
Open
{theta}
1.0 | K5
NH3 Loss
{theta}
1.0 | K6
NO2+3
{theta}
1.0 | K(CI)
TRC
{theta}
1.1 | S
Benthic
{theta} | ### **Antidegredation Review** An antidegradation review (ADR) was conducted to determine whether the proposed activity complies with the applicable antidegradation requirements for receiving waters that may be affected. The Level I ADR evaluated the criteria of R317-2-3.5(b) and determined that a Level II antidegradation Review is required because the receiving waterbody is classified as a 1C drinking water source.